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Abstract
In this paper, an extension of linear-quadratic-Gaussian (LQG) control theory is used to
determine the optimal state feedback controller for a vibratory energy harvesting system with
Coulomb friction. Specifically, the energy harvester is a base-excited
single-degree-of-freedom (SDOF) resonant oscillator with an electromagnetic transducer
attached between the base and the moving mass. The development of the optimal controller
for this system is based on statistical linearization, whereby the Coulomb friction force is
replaced by an equivalent linear viscous damping term, which is calculated from the stationary
covariance of the closed-loop system. It is shown that the covariance matrix and optimal
feedback gain matrix can be computed by implementing an iterative algorithm involving linear
matrix inequalities (LMIs). Furthermore, this theory is augmented to account for a
non-quadratic dissipation in the electronics used to control the energy conversion. Simulation
results are presented for the SDOF energy harvester in which the performance of the optimal
state feedback control law is compared to the performance of the optimal static admittance
over a range of disturbance bandwidths.

1. Introduction

Electromechanical systems to harvest energy from ambient
mechanical vibrations have become the subject of con-
siderable engineering research. For applications in which
the power requirements are on the order of µW–mW, the
dominant technology has been comprised of piezoelectric
transducers embedded within flexible cantilever beams. For
example, it has been shown in several studies that such
piezoelectric transducers can be used to power wireless
sensing and embedded computing systems [1–3]. However,
large-scale energy harvesting from vibrating structures (i.e.,
vehicles, multi-story buildings, and bridges) has recently also
been shown to be a viable source of renewable energy.
Electromagnetic transducers have been developed to extract
power from vibrations in automotive suspensions [4], railway
systems [5], wave excitations on offshore structures [6], and

wind excitations on buildings [7]. The available power from
such applications has been estimated to be at the W–kW scale.

Regardless of the scale or the hardware that is being used
to harvest energy, nonlinearities often exist in the vibrating
structure and transducer. In a recent study by Stanton et al
[8], a nonlinear model for a piezoelectric energy harvester
is derived from first principles and is compared to an
experimental system. It is shown that nonlinear damping in
the cantilever beam as well as nonlinear electromechanical
coupling in the piezoelectric patch must be accounted for
in the model in order to accurately predict the response
of the beam. In addition, Cassidy et al [9] developed a
predictive model to account for the nonlinearities present in an
electromagnetic transducer consisting of a ballscrew actuator
coupled to a permanent-magnetic synchronous machine. The
nonlinearities in that device are caused by the sliding friction
interaction between the ballscrew and ball bearings as well as
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the elasticity of the belt that connects the ballscrew to the shaft
of the motor.

Nonlinearities also occur in the electronics that interface
the transducer with energy storage. For the simplest
passive energy harvesting circuit, which consists of a
standard diode bridge, a small amount of parasitic power
is dissipated in a nonlinear manner as a result of the
voltage threshold that is required for the diodes to conduct.
More elaborate active energy harvesting circuits, such as
buck–boost converters [10] or H-bridges [11, 12], are operated
via high-frequency pulsewidth modulated (PWM) switching
control of MOSFETs. The parasitic power losses associated
with these switching converters are highly nonlinear and
are a result of the way in which the transducer current is
controlled to track a desired current. As such, the study
by Scruggs et al [13] derived an approximate loss model
for the behavior of an H-bridge operated in discontinuous
conduction for a piezoelectric energy harvester excited by
a broadband disturbance. The nonlinearities in the model
derived in that paper can be attributed to the conduction losses
in the MOSFETs and diodes as well as gating and transition
losses.

Despite the challenges associated with modeling non-
linear power losses in switching converters, it has been
demonstrated that these circuits have many advantages over
the standard passive diode bridge. The main advantage of
switching converters is that they can impose desired static or
dynamic relationships between the voltage and current of the
transducer. As such, the input admittance of the circuit can
be freely chosen to optimize the rate of power flow from the
transducer to storage. Several studies [14, 15] have shown that
for sinusoidal disturbances, power generation is optimized by
matching the input admittance of the harvesting circuit to the
complex conjugate transpose of the driving point admittance
of the harvester. For the case in which the energy harvester is
excited by a stochastic disturbance, Scruggs showed in [15]
that the optimal causal control of the transducer current
(as derived by LQG control theory) is such that the input
admittance of the optimal harvesting circuit cannot be made
equivalent to any passive network. This is because in such
circumstances, there are frequency bands in which the average
power for the optimized system flows from storage back into
the harvester. That study advocates for the realization of a
synthetic dynamic admittance using an actively controlled
H-bridge.

The main objective of this paper is to develop a way
to account for dynamic nonlinearities in the harvester, while
optimizing the controller for maximum power generation.
Toward this end we use statistical linearization to account
for the influence of the nonlinearities on the stochastic
response. This concept has been applied in piezoelectric
energy harvesting applications by Ali et al [16], but not in
the context of optimal control. However, problems involving
simultaneous statistical linearization and optimal control have
been investigated in other applications. These techniques were
first developed to account for saturation constraints on control
inputs in stochastic systems [17]. In another study by Gökçek
et al [18], saturating linear-quadratic-regulator (SLQR) and

saturating linear-quadratic-Gaussian (SLQG) feedback gains
were developed for linear systems with saturating actuators.
Several additional studies [19–21] have developed sub-
optimal control designs to account for nonlinear systems that
are subjected to stochastic disturbances. In [19], an iterative
algorithm was proposed in which the optimal controller for
the statistically linearized system is updated until specified
response statistics converge. However, a standard Riccati
equation is solved for the statistically linearized system
at each iteration, which results in the performance being
sub-optimal. Controllers developed for the systems studied
in [20, 21] were computed by first statistically linearizing
the nonlinear system, and then solving a standard Riccati
equation as if the linearized coefficients were independent of
the feedback law. This also leads to a sub-optimal solution.

In this paper, the control objective is different from
the ones presented in [17–21]. The performance objective
in those studies minimizes the variance of the system’s
output, while the performance objective in the present study
maximizes the average power generated by the transducer.
Furthermore, the nonlinearity in the energy harvesting system
in this study is a result of Coulomb friction present in
the electromagnetic transducer, which was experimentally
identified in [9]. We show that the optimal feedback gains
for the nonlinear system can be computed by solving two
nonlinear, coupled algebraic equations. The first equation is
similar to the standard Lyapunov equation, which is used
to solve for the stationary covariance matrix, while the
second equation is similar to the standard Riccati equation,
which is used to solve for the optimal feedback gains.
Solving these two equations can be accomplished through an
iterative algorithm, which solves the Riccati equation using
standard linear matrix inequality (LMI) [22] techniques. In
addition to the nonlinearities in the transducer, we develop
a non-quadratic loss model for the H-bridge operating in
continuous conduction mode (CCM). The final section of this
paper augments the iterative algorithm to account for this
non-quadratic loss model in the optimization of the controller.

2. Energy harvester model

An illustration of the electromagnetic transducer that is
considered in this study is shown in figure 1(a). Linear-
to-rotational conversion is accomplished via a precision
ballscrew. Such devices constitute one of the most efficient
methods of linear-to-rotational conversion when power flow
is in the direction from linear-to-rotational motion and when
high mechanical advantage is important. The ballscrew is
interfaced with the shaft of a permanent magnet synchronous
machine via a timing belt with a 1:1 ratio. Typically,
these types of transducers are used for positioning in the
manufacturing industry and are commercially available, for
example, from Kollmorgen [23, 24].

The linear velocity ṙ(t) of the device is related to the
angular velocity of the motor θ̇ (t) via the lead conversion l;
i.e., ṙ(t) = lθ̇ (t). The linear-to-rotational conversion of the
ballscrew can be modeled as relating the linear force f (t) of
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Figure 1. (a) Illustration of the electromagnetic transducer, consisting of a back-driven ballscrew and a permanent magnet synchronous
machine; (b) SDOF oscillator and coupled electromagnetic transducer, which is connected to electronics and energy storage.

the device to the electromechanical force fe(t) of the motor,
via the equation

f (t) = fe(t)− Fcsgn(ṙ(t))− mdr̈(t)− cdṙ(t)− kdr(t) (1)

where md and cd are the equivalent linear mass and viscous
damping resulting from the rotational inertia and viscous
damping of the ballscrew and shaft of the motor, respectively.
It was experimentally determined in Cassidy et al [9] that
Coulomb friction and stiffness forces, which are represented
by Fc and kd, are also present in the device. In addition,
it is shown in [9] that the electromechanical force for the
transducer considered in this study is proportional to current
via the relationship

fe(t) =
3Ke

2l
i(t) = cei(t) (2)

where Ke is the magnitude of the back-emf of the motor
and ce is the electromechanical coupling coefficient. From
the relationship in equation (2), the voltage generated by the
transducer is proportional to linear velocity; i.e., v(t) = ceṙ(t).

Next, we consider an energy harvesting system consisting
of the electromagnetic transducer embedded within a single-
degree-of-freedom (SDOF) resonant oscillator as shown in
figure 1(b). The SDOF oscillator is characterized by a mass
ms, a damping cs, and a stiffness ks, and is excited at its
base by the stochastic disturbance acceleration a(t). Thus, the
coupled dynamics of the SDOF oscillator and electromagnetic
transducer can be expressed by the nonlinear differential
equation

mr̈(t)+ cṙ(t)+ kr(t)+ Fcsgn(ṙ(t)) = msa(t)+ fe(t) (3)

where r(t) is the relative displacement of the mass of the
structure, m = md + ms, c = cd + cs, and k = kd + ks. If we
define the harvester state vector as xh(t) = [

√
kr(t)

√
mṙ(t)]T,

then the harvester dynamics can be expressed by the self-dual
state space

ẋh(t) = Ahxh(t)+ Fhsgn(ṙ(t))+ Bhi(t)+Gha(t) (4a)

v(t) = BT
h xh(t) (4b)

ṙ(t) = Chxh(t) (4c)

where

Ah =

[
0

√
k/m

−
√

k/m −c/m

]
, Bh =

[
0

ce/
√

m

]
,

Gh =

[
0

ms/
√

m

]
,

Fh =

[
0

−Fc/
√

m

]
, Ch =

[
0 1/
√

m
]
.

In many vibratory energy harvesting applications, the
disturbance acceleration is most accurately modeled as a
broadband stochastic process. As such, we characterize the
disturbance acceleration by the second-order bandpass filter

ẋa(t) = Aaxa(t)+ Baw(t) (5a)

a(t) = Caxa(t) (5b)

where

Aa =

[
0 1

−ω2
a −2ζaωa

]
, Ba =

[
0

2σa
√
ζaωa

]
,

Ca =

[
0 1
]
.

We assume that the input w(t) is a white noise process with
spectral intensity equal to unity. In addition, we have that
σa is the standard deviation of the disturbance acceleration,
ωa =

√
k/m is the passband of disturbance filter, and ζa

determines the quality factor of the disturbance filter. We
combine the harvester states with the disturbance states such
that the augmented state space x(t) =

[
xT

h (t) xT
a (t)

]T
obeys

ẋ(t) = Ax(t)+ Fsgn(ṙ(t))+ Bi(t)+Gw(t) (6a)

v(t) = BTx(t) (6b)

ṙ(t) = Cx(t) (6c)

with appropriate definitions for the matrices {A,B,C,F,G}
above.

Values for the various parameters considered in this
study can be found in table 1. The transducer parameter
values are specific to the EC3 ballscrew and AKM44E motor
configuration from Kollmorgen, which were experimentally
verified in Cassidy et al [9]. In addition, the energy harvester’s
mass, damping, and stiffness correspond to values for a
scaled tuned mass damper within a multi-story building. The
system’s natural frequency is 0.5 Hz, with a damping ratio
of 5%.
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Figure 2. (a) Example power electronic circuit consisting of an H-bridge; (b) block diagram illustrating the state feedback control law;
(c) block diagram illustrating the static admittance.

Table 1. Parameter values for the electromagnetic energy harvester.

Parameter Value Parameter Value

Ke 0.77 N m A−1 Fc 160 N
Rc 2.41 � ms 3000 kg
l 2.55×10−3 m rad−1 cs 395 N s m−1

md 20 kg ks 3×104 N s−1

cd 575 N s m−1 ωa 0.5 Hz
kd 630 N m−1 σa 0.18 m s−2

3. Optimal linear energy harvesting

In this section, we neglect the effects of the Coulomb friction
force in equation (6) (i.e., we assume that Fc = 0). In
addition, we assume that the power losses in the electronics
are quadratic and purely resistive. For the linear harvester
and disturbance model, it is then possible to determine the
state feedback control law that maximizes the harvested power
using LQG optimal control theory. Optimization of the energy
harvesting cost function can be accomplished through the
linear state feedback relationship i(t) = Kx(t), where the
matrix K can be computed as explained below.

Operating the transducer such that it implements a
desired control law requires power electronic circuitry to
accurately track a current command signal. Because the
electronics must be capable of injecting as well as extracting
power, an H-bridge, which is pictured in figure 2(a),
is used to track the current command signal i∗(t). As
shown in figure 2(a), tracking i∗(t) is accomplished through
high-frequency pulsewidth modulation (PWM) switching
control of four MOSFETs (labeled Q1 through Q4). Gate
drives control the MOSFETs using an error signal, which is
computed by sending the difference between the desired and
actual current through a proportional–integral (PI) controller.
We make the assumption that the tracking dynamics of
the power electronics lie outside the frequency band of the
disturbance.

To determine the energy harvesting cost function, we
first define the power delivered to storage as the power
extracted by the transducer minus the transmission losses in

the power electronic circuitry. If we approximate these losses
as resistive, with some resistance R, then the power delivered
to storage is PS(t) = −i(t)v(t) − Ri2(t). We note that the
negative signs in this expression are due to the fact that the
current flowing into the transducer is defined as being positive
in figure 2(a). Next, we define the average power generated as
the expectation of the power delivered to storage; i.e.,

P̄gen = −E


[

x(t)

i(t)

]T [
0 1

2 B
1
2 BT R

][
x(t)

i(t)

] . (7)

Maximization of equation (7) is equivalent to a LQG optimal
control problem.

In order to maximize the expression in equation (7), we
must determine the optimal feedback gain matrix K. It has
been shown in [15] that K is

K = −
1
R

BT
(

P+
1
2

I
)

(8)

where P = PT < 0 is the unique, stabilizing solution to the
nonstandard Riccati equation

ATP+ PA−
1
R

(
P+

1
2

I
)

BBT
(

P+
1
2

I
)
= 0. (9)

Furthermore, the average power generated with the electronics
implementing the optimal feedback control law is

P̄gen = −GTPG. (10)

A block diagram illustrating the implementation of the
optimal state feedback control law can be seen in figure 2(b).
In this figure, we make the assumption that i(t) ≈ i∗(t).
In addition, we assume that every state in the augmented
harvester and disturbance model is available for feedback.
However, if this is not the case, then the measured transducer
voltage can be passed through a standard Luenberger
observer [25], which can be used to estimate the remaining
system states. It would thus be straightforward to extend the
theory presented in this paper to design a dynamic controller
that maps the transducer voltage into the current command
signal to be tracked by the electronics.
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It is also possible to operate the H-bridge such that it
imposes a static admittance at the terminals of the transducer.
By convention, when the electronics are implementing the
static admittance the control current relationship is i(t) =
−Ysv(t). A block diagram illustrating the implementation of
the static admittance can be seen in figure 2(c). Again, we
make the assumption that i(t) ≈ i∗(t). If we substitute i(t) =
−Ysv(t) into equation (6), then the stationary covariance
matrix S = E{xxT

} is found by solving the Lyapunov
equation

[A− YsBBT
]S+ S[A− YsBBT

]
T
+GGT

= 0 (11)

and the resultant average power generated can be computed as

P̄gen = (Ys − Y2
s R)BTSB. (12)

Because the system only has one design parameter (i.e., Ys)
in this case, the most straightforward way to optimize P̄gen is
via a one-dimensional line search. For example, the bisection
algorithm will converge rapidly to the optimal Ys, given
{A,B,G,R}.

4. Statistically linearized energy harvesting

In this section, we extend the theory presented in the previous
section to account for the Coulomb friction force present in
the electromagnetic transducer. Again we assume that the
losses in the electronics are purely resistive.

4.1. Stationary covariance

The general state space model for an energy harvesting system
with nonlinearities is

ẋ(t) = Ax(t)+ φ(x(t), t)+ Bi(t)+Gw(t) (13a)

v(t) = BTx(t) (13b)

y(t) = Cx(t) (13c)

where we assume the function φ(x(t), t) is nonlinear. We
assume φ(0, t) = 0, and that it is anti-symmetric; i.e.,
φ(−x(t), t) = −φ(x(t), t). In addition, we assume that x(t)
has a probability distribution which can be approximated as
Gaussian with zero mean (because φ(x(t), t) is assumed to
be anti-symmetric) and covariance Σ(t). The corresponding
probability density function (pdf) of x(t) is

p(x(t), t) =
1

√
(2π)n det Σ(t)

exp
{
−

1
2

xT(t)Σ−1(t)x(t)
}
.

(14)

If we implement any stabilizing full-state feedback control
law i(t) = Kx(t), then the solution to the covariance Σ(t)
can be found via statistical linearization [26]. Specifically,
the dynamic evolution of Σ(t) is governed by the differential
equation

Σ̇(t) = E{∇T
x φ

T
cl(x(t), t)}TΣ(t)

+ Σ(t)E{∇T
x φ

T
cl(x(t), t)} +GGT (15)

where the closed-loop nonlinear function φcl(x(t), t) is

φcl(x(t), t) = Ax(t)+ BKx(t)+ φ(x(t), t) (16)

and where ∇x is the gradient operator with respect to the
variable x. The covariances, S, in stationary response is then
found by finding the equilibrium of the above, i.e., the solution
to the Lyapunov-like equation

E{∇T
x φ

T
cl(x)}

TS+ SE{∇T
x φ

T
cl(x)} +GGT

= 0.

(17)

For the case where the nonlinearity is Coulomb friction,
we replace φ(x(t), t) with Fsgn{ṙ(t)} in equation (16) where
ṙ(t) = y(t). Taking the gradient of φcl(x(t), t) with respect to
x(t), results in

∇
T
x φ

T
cl(x(t), t) = AT

+KTBT
+ 2CTFTδ(y(t)) (18)

where δ(·) is the Dirac delta function. Next, taking the
expectation of both sides of equation (18) results in the
following expression

E{∇T
x φ

T
cl(x(t), t)} = AT

+KTBT

+ 2CTFT
∫

y
δ(y(t))p(y(t), t) dy. (19)

But by assumption, the pdf for y(t) is a zero-mean Gaussian
function, with scalar variance σy(t) = CΣ(t)CT; i.e.,

p(y(t), t) =
1√

2πσy(t)
exp{−y2(t)/2σy(t)}. (20)

Thus, we have that equation (19) is

E{∇T
x φ

T
cl(x(t), t)} = AT

+KTBT
+ V(t)T (21)

where

V(t) =

√
2
π

FC√
CΣ(t)CT

. (22)

Substituting equation (21) into (15) results in an equation for
Σ(t) as

Σ̇(t) = Acl(t)Σ(t)+Σ(t)Acl(t)
T
+GGT (23)

where Acl(t) = A + BK + V(t). It is important to note
that the matrix V(t) augments the dynamics matrix A by
adding an additional term which supplements the viscous
damping in the system. This additional term is the statistically
equivalent linear viscous damping due to the Coulomb friction
force.

The stationary covariance is then the equilibrium solution
of equation (23); i.e., the solution with Σ̇(t) = 0. Although
the resultant equation is reminiscent of an algebraic Lyapunov
equation, it is in fact nonlinear, because V(t) depends on Σ(t).
In general, the equilibrium solution to equation (23) can only
be found iteratively.

It is also important to recognize that equilibrium
solutions of equation (23) may not necessarily be stable, and
mean-square stability of any equilibrium solution must be
checked. From classical linear system theory, we know that
if Acl(t) were constant (i.e., if it did not depend on Σ(t))

5
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then equation (23) would have a unique equilibrium, so long
as Acl(t) does not have any two eigenvalues that sum to
zero. Asymptotic stability of this unique equilibrium (and,
therefore, achievement of stationarity of the covariance Σ(t))
then follows if and only if Acl(t) is asymptotically stable.
However, because Acl(t) varies with Σ(t), the situation at
hand is somewhat more complicated than this.

Let S be an equilibrium solution to equation (23), and
then consider that for ‖Σ(t) − S‖ small, the stability of Σ(t)
can be ascertained by examining the linearized version of
equation (23), with Σ(t) = S used as the linearization point.
The resultant linearized covariance equation for the deviation
Ξ(t) = Σ(t)− S is

Ξ̇(t) = AclΞ(t)+Ξ(t)AT
cl

−

√
1

2π
CΞ(t)CT

(CSCT)3/2
[FCS+ SCTFT

] (24)

where the time-invariant closed-loop dynamics matrix is
Acl = Acl(t)|Σ(t)=S. In order for equilibrium solution S to be
a valid stationary solution, the above linearized differential
equation must be asymptotically stable about the origin.

Note that equation (24) is not a standard Lyapunov
differential equation, due to the last term on the right. Similar
equations arise in the literature on stochastic systems with
multiplicative noise inputs [27], where it is well known that
asymptotic stability is not in general guaranteed by asymptotic
stability of Acl. Even when this condition is satisfied, the
last term on the right-hand side can have a destabilizing
effect. For a given set of parameters {A,B,C,F,K} and a
known equilibrium solution S, stability of equation (24) can
be inferred exactly by converting this equation into vectorized
form, using Kronecker algebra, and then examining the
asymptotic stability of associated n2

× n2 dynamics matrix.
However, here we instead introduce a simpler test that is
sufficient to guarantee stationarity. Specifically it can be
shown that if Acl is asymptotically stable and if

(CSTSCT)1/2(FTTF)1/2

(CSCT)3/2
<

√
π

2
(25)

where T > 0 is the solution to the Lyapunov equation

AT
clT+ TAcl + CTC = 0 (26)

then equation (24) is asymptotically stable. A proof of this
result is given in the appendix.

Finally, we note that, because statistical linearization
is merely an approximation of the true system dynamics,
it is important that certain precautions be taken to ensure
that a stable covariance matrix is indeed a justifiable
approximation of the true mean-square system behavior.
At the bare minimum, it should be ensured that the true
system is bounded-input bounded-state stable, in order for
the approximate ensemble averages to be meaningful. For
the type of nonlinear system we consider here (i.e., where
the nonlinearities arise due to Coulomb friction), this may be
done by checking that the matrix A + BK is asymptotically
stable. It is a straightforward Lyapunov analysis to show that
if this condition holds, then the ratio ‖xh‖∞/‖a‖∞ is always

bounded, independently of the amount of Coulomb friction
present in the system.

4.2. Stationary optimal energy harvesting

Recall that the energy harvesting objective is to maximize the
average power generated in stationarity; i.e.,

P̄gen = −tr{[ 12 KTBT
+

1
2 BK+ RKTK]S} (27)

over the feedback gain matrix K. Since this optimization is
subject to the constraint in to equation (23), we define the
Hamiltonian H as

H = −P̄gen + tr{P(AclS+ SAT
cl +GGT)} (28)

where P = PT is a Lagrange multiplier matrix which enforces
the stationary solution to equation (23) as a constraint in the
optimization. Thus, we have the following minimax problem

K = argmin
K

[
min
S=ST

max
P=PT

H
]
. (29)

To find the optimal solution to the problem in
equation (29), we take the partial derivative of the
Hamiltonian with respect to each of the decision variables and
set these quantities equal to zero. This procedure constitutes a
standard approach to solving an optimal control problem [28].
For brevity, we suppress the intermediate steps required to
compute the partial derivatives and merely highlight their final
analytical expressions. We start by taking the partial derivative
of H with respect to S; i.e.,

∂H
∂S
=

1
2

KTBT
+

1
2

BK+ RKTK+ PAcl

+ AT
clP− UPV− VTPUT

= 0 (30)

where V = V(t)|Σ(t)=S and

U =
1
2

CTCS
CSCT . (31)

Next, we take the partial derivative of H with respect to
K; i.e.,

∂H
∂K
= SBT

+ 2RSKT
+ 2SPB = 0. (32)

Pre-multiplying equation (32) by S−1 and solving for K
results in equation (8), but with the new P found via
equation (30) rather than the Riccati equation in equation (9).
It is not necessary to take the partial derivative of H with
respect to the Lagrange multiplier P as this will just give us
back the equilibrium condition for S in equation (23). Finally,
we can substitute equation (8) into (23) and (30) to arrive at
two coupled, nonlinear algebraic equations for S and P that
must hold at the optimum; i.e.,[

A+ V−
1
R

BBT
(

P+
1
2

I
)]

S

+ S
[

A+ V−
1
R

BBT
(

P+
1
2

I
)]T

+GGT
= 0 (33)
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[A+ V]TP+ P[A+ V] −
1
R

(
P+

1
2

I
)

BBT
(

P+
1
2

I
)

− UPV− VTPUT
= 0. (34)

4.3. Iterative algorithm

Because U and V depend on S, equations (33) and (34) are
coupled nonlinear algebraic equations. As such, solutions for
the stationary covariance matrix S and the Lagrange multiplier
P must be computed iteratively. To do this, we begin by
linearizing equation (28) about S = S0; i.e.,

H̃ = −P̄gen + tr
{

P
[
[A+ BK+ V0]S

+ S[A+ BK+ V0] +GGT

+
1
2
(V0S0 + S0VT

0 )

(
1−

CSCT

CS0CT

)]}
(35)

where V0 = V|S=S0 . Regrouping terms, we have that

H̃ = tr{P[GGT
+

1
2 (V0S0 + S0VT

0 )]

+ S[ 12 KTBT
+

1
2 BK+ RKTK

+ P[A+ BK+ V0] + [A+ BK+ V0]
TP

− U0PV0 − VT
0 PUT

0 ]} (36)

where U0 = U|S=S0 . If {K,P,S} are the optimal parameters
for original problem, they will also be optimal parameters for
the linearized problem with S0 equal to its optimal value.

Now, consider that if we assume that the optimal K is
such that Acl is asymptotically stable, then S0 > 0 can be
assumed to hold at the optimal solution as well. If this is the
case then, using the linearized Hamiltonian and substituting
the optimal relationship between K and P in equation (8), the
value of H̃ is bounded by

H̃ > tr{P[GGT
+

1
2 (V0S0 + S0VT

0 )]} (37)

where P is subject to the constraint

[A+ V0]
TP+ P[A+ V0] −

1
R

(
P+

1
2

I
)

BBT
(

P+
1
2

I
)

− U0PV0 − VT
0 PUT

0 > 0. (38)

Furthermore, we know from equation (34) that for any optimal
solution, equation (38) holds with an equality. But if this
is true, then equation (37) also holds with an equality at
any optimum. Thus, for S0 > 0 equal to the optimal S, the
optimization

P = argmax
P

tr{P[GGT
+

1
2 (V0S0 + S0VT

0 )]} (39)

subject to equation (38), or equivalently, the LMI[
[A+ V0]

TP+ P[A+ V0] − U0PV0 − VT
0 PUT

0

(
P+ 1

2 I
)

B

BT
(

P+ 1
2 I
)

R

]
> 0

(40)

will give the same optimal solution for P.

Motivated by the above, we define the matrix function
P = 2(S0), over the domain S0 > 0, as

2(S0) =

sol
P


Given : S0 > 0

Maximize : tr
{
P[GGT

+
1
2 (V0S0 + S0VT

0 )]
}

Over : P

Subject to : LMI constraint in equation (40).

(41)

The optimization in equation (41) is convex and is feasible for
any S0 > 0, and may therefore be viewed as a unique function
over the domain S0 > 0. Using this function, the following
iterative algorithm can be used to solve for the values of S and
P at the optimum:

Step 0. Initialize S0 by solving the linear energy harvesting
problem (i.e., with U = V = 0).

Step 1. Compute new values for V0 and U0 using S0.
Step 2. Compute P = 2(S0).
Step 3. In equation (33), fix V← V0 and solve the resultant

Lyapunov equation for S.
Step 4. Set S0 ← S and return to Step 1.

Convergence of the algorithm is reached when the
absolute value of the change in P̄gen between the current and
previous iteration is below a certain tolerance. The value of
P̄gen at the first iteration can be calculated using equation (10)
while the value of P̄gen at any subsequent iteration can be
calculated using equation (27).

Here, we make no claim that this algorithm always
converges, although it did converge for all examples
considered in this paper. Once convergence is reached,
asymptotic stability of Acl at the optimum should be verified.
Furthermore, it should also be verified that the matrix A+BK
is asymptotically stable, and that inequality equation (25)
holds. All conditions were found to hold uniformly in the
solutions for the examples considered here.

For the energy harvesting example considered in this
paper, the above algorithm was found to converge within
10–20 iterations. Using the system defined in equation (6),
we illustrate the convergence of the proposed algorithm in
figure 3. For this example, we fix R = 5 � and ζa = 0.5
and run the algorithm with a convergence tolerance of 1e−6.
As shown, the algorithm converges to P̄gen = 10.1 W in 14
iterations.

4.4. Example

We can gain some valuable insight into the statistically
linearized energy harvesting problem by comparing the P̄gen
resulting from the optimal static admittance with the P̄gen
resulting from the optimal feedback control law. The plots
in figure 4 illustrate this comparison for the SDOF energy
harvester characterized by equation (6). We see that the curves
in both plots monotonically decrease as ζa increases and that
the curves in figure 4(b) have higher P̄gen values than the
curves in figure 4(a).

7
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Figure 3. Example of the iterative algorithm converging for
R = 5 � and ζa = 0.5.

To illustrate the improvement in performance that can be
achieved by implementing the feedback controller, we define
the ‘P̄gen ratio’ in figure 5 as the ratio of P̄gen resulting from
the static admittance over P̄gen resulting from the feedback
controller. From this plot, we obtain the interesting result that
there is a finite bandwidth for a(t) at which the feedback
controller is most beneficial. Another important result of this
analysis can be seen in the narrowband limit as ζa → 0. At
this limit, we see that the P̄gen ratio is equal to unity. As
pointed out in [29] (for the case without Coulomb friction),
this is due to the fact that the velocity and acceleration gains
are the only gains in K required for the optimal feedback
controller. In the narrowband limit, ṙ(t) and a(t) become
purely sinusoidal and exactly in phase, which means that
knowledge of both is redundant. Thus, we can conclude
that for the case where Coulomb friction is included in the
dynamics of the harvester, that the optimal i(t) is attained by
imposing a static admittance.

Finally, we illustrate the effect that Coulomb friction has
on the average power generated in figure 6. The ‘friction ratio’
curves in this plot are defined as the ratio of P̄gen resulting
from the statistically linearized feedback controller over P̄gen
resulting from the feedback controller without Coulomb

Figure 5. P̄gen ratio for R values of 2, 5, 10, 20, and 50 � (from
bottom to top).

Figure 6. Friction performance ratio for R values of 2, 5, 10, 20,
and 50 � (from top to bottom).

friction. As shown, the ratios decrease as ζa increases for
all values of resistive losses. In addition, we see that in the
limit as ζa → 0, the ratios approach the same value which is
independent of R. From this analysis, we can conclude that
systems with higher resistive losses are more sensitive (in
terms of performance) to the effects of Coulomb friction when
the system is excited by broadband disturbances.

Figure 4. Comparison of the average power generated by: (a) the optimal static admittance and; (b) the optimal feedback control law; for R
values of 2, 5, 10, 20, and 50 � (from top to bottom).
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Figure 7. Transducer current with the electronics operating in
CCM.

5. Non-quadratic loss model

5.1. Loss model of an H-bridge in CCM

Consider again the H-bridge in figure 2(a). In this circuit,
each MOSFET/diode pair is operated like a power electronic
switch. For this paper, we consider the operation of this
system in bi-directional continuous conduction mode (CCM).
In this operating regime, the transducer’s current is controlled
to take on the shape shown in figure 7. As shown, current from
the transducer is controlled to be a triangle wave, which is
triggered by a switching clock with period ts. The switching
frequency fs = 1/ts is presumed to be at least a decade
above the pre-dominant dynamics of the harvester (i.e., fs >
10ωa/2π ), and as such, the high-frequency component of
the current is filtered out by the inertia of the transducer.
Consequently, it is only the low-frequency switch-averaged
current that significantly influences the overall system
response. For clarity, we refer to i(t) and v(t) as the
switch-averaged current and voltage, respectively, and ĩ(t) and
ṽ(t) as the actual current and voltage, respectively, with the
high-frequency content included.

For the analysis of the H-bridge presented here, we
assume that ĩ(t) > 0 for t ∈ [0, ts]. Making the assumption
that ĩ(t) < 0 for t ∈ [0, ts] would result in the same expression
for the losses. As such, the H-bridge operated in CCM works
as follows. At the leading edge of each switching cycle,
MOSFETs Q1 and Q4 are gated on for the first Dts seconds,
which increases ĩ(t). The equivalent circuit made by this
current path can be seen in figure 8(a). Then, at time t = Dts,
the conducting MOSFETs Q1 and Q4 are gated off, causing
the free-wheeling diodes Q2 and Q3 to conduct. This causes
ĩ(t) to decrease until the switching period ts is reached. The

equivalent circuit made by this current path can be seen in
figure 8(b).

The power dissipated during this process is what is
known as conductive dissipation. We assume this dissipation
to be a consequence of forward conduction losses in the
MOSFETs and diodes. These two devices have very different
dissipative characteristics, which are nonlinear. To simplify
the analysis, we make the conservative assumption that energy
is dissipated like a diode in series with a resistor over the entire
switching period. We define the total forward conduction
voltage of the diodes as Vd and the total resistance of the
conducting MOSFETs in series with the equivalent resistance
of transducer’s coil as Rm. Additional losses, such as transition
and gating losses in the MOSFETs, are neglected in this
analysis as they will have a negligible effect on the loss model
for the levels of power considered in this paper. However, for
piezoelectric energy harvesting applications, where the levels
of power are on the order of µW–mW, transition and gating
losses will have a much greater effect on the efficiency of the
electronics and they should be in included in the loss model.
See [13] for an analysis which includes these losses.

The goal is to determine an expression for the losses in
the H-bridge in terms of i(t) and the non-dynamic parameters
of the drive. We begin by following Kirchoff’s voltage law
in the direction of positive current for the circuits in figure 8.
Thus, we have that the voltage across the inductor is

vL(t) =

{
VS − ṽ(t)− Vd − Rm ĩ(t) : t ∈ [0,Dts]

−VS − ṽ(t)− Vd − Rm ĩ(t) : t ∈ [Dts, ts].

(42)

Next, we make the assumption that the current ripple on
the inductor is small (i.e., |i(t)| � Ĩ in figure 7) during
steady-state operation of the drive. As such, we temporarily
approximate ĩ(t) and ṽ(t) as being constant over one switching
period ts (i.e., ĩ(t) ≈ i and ṽ(t) ≈ v). Then we have that the
average value of the voltage across the inductor, v̄L, during
each switching cycle is equal to 0; i.e.,

v̄L =
1
ts

∫ ts

0
vL(t) dt ≈ Dts(VS − v− Vd − Rmi)

+ (1− D)ts(−VS − v− Vd − Rmi) = 0. (43)

The approximation in equation (43), referred to ‘inductor
volt-second balance’, constitutes a standard approach for
analyzing power electronic converters that are operating in

Figure 8. Equivalent circuit made by the H-bridge and transducer for (a) t ∈ [0,Dts] and (b) t ∈ [Dts, ts].
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CCM [30]. From equation (43), we can then solve for the
value of the steady-state duty cycle D as

D =
VS + v+ Vd + Rmi

2VS
. (44)

The power dissipated in the electronics over the course
of a switching cycle, Pd(i), can be computed by integrating
the total resistive losses and the total diode losses over the
switching period ts; i.e.,

Pd(i) =
1
ts

{∫ ts

0
Rm ĩ2(t) dt +

∫ ts

0
Vd|ĩ(t)| dt

}
(45)

= Rm(i
2(t)+ 1

3 Ĩ2)+ Vd|i(t)|. (46)

where equation (46) assumes the triangular current waveform
in figure 7. We can derive an expression for the magnitude of
the current ripple using the expression for the inductor voltage
during the interval t ∈ [0,Dts]; i.e.,

Ĩ =
Dts
2L

vL(t) =
ts
2L

V2
S − (v+ Vd + Rmi)2

2VS
. (47)

We can conservatively approximate the magnitude of the
current ripple by assuming that VS � v + Vd + Rmi. Thus,
we have that the upper bound for Ĩ is

Ĩ =
VS

4Lfs
(48)

and the expression for power dissipation in the electronics is
conservatively approximated by

Pd(i) =
RmV2

S

48L2f 2
s
+ Rmi2(t)+ Vd|i(t)|. (49)

5.2. Statistically linearized energy harvesting with
non-quadratic loss models

We now propose a technique for expanding the theory
presented in section 4 to accommodate non-quadratic loss
models. If the dynamics of the closed-loop system are
statistically linearized, then the response distribution for the
augmented system state x(t) is assumed to be Gaussian.
Consequently, the distribution of the current i(t) is also
Gaussian, with zero mean and variance si = E i2(t). We
may evaluate the average power dissipation by taking the
expectation of equation (49); i.e.,

P̄d = E Pd(i)

=
1
√

2πsi

∫
∞

−∞

exp{−i2(t)/2si}Pd(i) di(t) (50)

=
RmV2

S

48L2f 2
s
+ Rmsi +

(
Vd

√
2
π

)
s1/2

i . (51)

Next, we note that if P̄d is semiconcave, i.e., if

∂2P̄d

∂s2
i

6 0, ∀si > 0 (52)

then it follows that P̄d can be overbounded by its first-order
Taylor expansion about any positive variance s0

i ; i.e.,

P̄d ≤ P̄0
d + R0si (53)

where

R0
=
∂P̄d

∂si

∣∣∣∣
si=s0

i

(54)

P̄0
d = P̄d|si=s0

i
− R0s0

i (55)

with the equality holding (as well as the slope) where si =

s0
i . The loss model derived in equation (51) is semiconcave

because both terms involving si have exponents less than or
equal to 1.

For semiconcave loss models, we may conservatively
overbound the losses through a summation of a static
(i.e., current-independent) loss model and a quadratic (i.e.,
resistive) loss model. This permits us to nest the above
loss model inside the iterative algorithm used to solve
equation (41) as follows:

Step 0. Initialize the loss model by taking an arbitrary value
for R > 0 and initialize S0 by solving the linear energy
harvesting problem (i.e., with U = V = 0).

Step 1. Compute new values for V0 and U0 using S0.
Step 2. Compute P = 2(S0).
Step 3. Compute K from equation (8) and fix V ← V0 in

equation (33) to solve the resultant Lyapunov equation for
S.

Step 4. Compute the variance of the current, as s0
i = KSKT.

Step 5. For the new value of s0
i , compute R0 via equation (54).

Step 6. Set R← R0 and S0 ← S and return to Step 1.

Convergence of the algorithm is reached when the
absolute value of the change in P̄gen between the current and
previous iteration is below a certain tolerance. The value of
P̄gen at the first iteration can be calculated using equation (10)
while the value of P̄gen at any subsequent iteration can be
calculated by

P̄gen = −tr
{
[

1
2 KTBT

+
1
2 BK+ R0KTK]S

}
− P̄0

d. (56)

5.3. Example

To illustrate how the non-quadratic loss model effects the
average power generated, we return to the SDOF energy
harvester system described in equation (6). The parameters in

Table 2. H-bridge electronic parameters for the loss model.

Parameter Value

Rm 2.61 �
Vd 1.4 V
L 8.93 mH
fs 33 kHz
VS 80 V
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Figure 9. Plot of the equivalent resistive losses R versus ζa.

the loss model are listed in table 2 and we justify these values
as follows. We assume that the diodes are standard silicon with
each modeled as possessing a current-independent conduction
voltage of 0.7 V. The MOSFETs have a drain-to-source
impedance which is resistive, with a value of 0.1 � when
gated with a gate–source voltage of 1.5 V. For the inductor,
we take its inductance to be that of winding of the transducer’s
coil (i.e., L = 8.93 mH). In addition, we know that winding of
the coil has an effective series resistance of 2.41 �. Thus, the
total conductive loss parameters for the H-bridge are taken
to be Vd = 2 × 0.7 = 1.4 V and Rm = 2 × 0.1 + 2.41 =
2.61 �. Finally, we assume that the H-bridge is connected to
a constant 80 V DC voltage source and that the MOSFETs

are switching at a frequency of 33 kHz. This is the switching
frequency for a S16A8 servo drive from Advanced Motion
Controls [31] used in the experimental validation of the
transducer in [9].

We begin by illustrating the equivalent resistive losses
resulting from the non-quadratic loss model in equation (49)
over a range of disturbance bandwidths. The plot in figure 9
shows the dependence of R on ζa for ζa ∈ [0, 1]. From
this plot we see that R initially decreases as ζa increases
until it reaches a minimum value. In this case the minimum
value is R = 3.62 �, which occurs at ζa = 0.164. Once R
reaches this minimum value it then increases linearly as ζa
increases. This relationship suggests that there is a specific
disturbance bandwidth where the electronics are operating
most efficiently.

Next, we illustrate how both the Coulomb friction in
the electromagnetic transducer and the conduction voltage of
the diodes in the H-bridge influences the performance of the
energy harvesting system. As such, we plot the P̄gen surface
for various combinations of {Fc,Vd} and for three disturbance
bandwidth values. The plots in figures 10(a)–(c) illustrate the
P̄gen surface for ζa values of 0.05, 0.2, and 0.7, respectively.
From these plots we see that as Fc and Vd approach 0, the
value obtained for P̄gen approaches the performance from
the linear energy harvesting example with purely resistive
losses. In addition, we see that P̄gen becomes more sensitive
to increases Fc and Vd as ζa increases.

If either Vd or Fc is sufficiently large, power generation
will effectively become infeasible, and P̄gen ≈ 0 at the

Figure 10. Surface plots for P̄gen as a function of {Fc,Vd} for: (a) ζa = 0.05; (b) ζa = 0.2; and (c) ζa = 0.7.
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Figure 11. Plot of the nondimensional Coulomb friction and diode
conduction voltage that results in P̄gen ≈ 0, for ζa values of 0.05,
0.1, 0.2, 0.3, 0.5, 0.7 (from top to bottom).

optimum. Levels of {Vd,Fc} resulting in this condition are
illustrated in figure 11. In this plot, both Fc and Vd are
nondimensionalized by using the standard deviation of the
disturbance acceleration σa. Furthermore, each of the lines in
the plot correspond to a different disturbance bandwidths ζa.
If the values of Fc and Vd (for a given σa and ζa) results in a
point that is at or above its corresponding line, then P̄gen ≈ 0.
Similarly, if the values of Fc and Vd (for a given σa and ζa)
results in a point that is below its corresponding line, then
P̄gen > 0. From the plot, we see that the levels of Vd and Fc
required for significant power generation are heavily coupled,
and thus cannot be considered in isolation.

6. Conclusions

In order to fully maximize the potential power generation
from an actively controlled vibratory energy harvester, the
mechanical and electrical nonlinearities in the system must
be accounted for in the control design. Nonlinearities arising
in the dynamics of the vibratory system can be statistically
linearized if the system is excited by a stochastic disturbance
and its response is approximated by a Gaussian distribution.
This paper illustrates how to account for the Coulomb friction
present in a stochastically excited SDOF oscillator and
maximize the average power generation by simultaneously
solving two coupled nonlinear algebraic equations. These
equations are derived from first principles and an iterative
algorithm is proposed to solve for the statistically linearized
covariance matrix as well as the optimal feedback gain matrix.
For the statistically linearized energy harvesting system with
purely resistive losses, it is shown that the full-state feedback
controller generates the same amount of average power as the
static admittance for a narrowband disturbance.

Additionally, this paper presents a nonlinear loss model
for the conductive power dissipated in an H-bridge that
is operated in CCM. As such, the proposed statistical
linearization and optimal control algorithm is augmented
to include the non-quadratic loss model. However, the
convergence of the algorithm is only guaranteed if the loss
model exhibits the semiconcave property, and this property

may not hold for all systems. For an H-bridge operating in
CCM, we illustrate that the equivalent resistance resulting
from the non-quadratic loss model reaches a minimum value
at a nontrivial disturbance bandwidth. In addition, for a given
disturbance bandwidth, we show the influence of varying
levels of Coulomb friction and diode conduction voltage on
the performance of the energy harvesting system. Finally, we
illustrate that there are critical levels of Coulomb friction
and diode conduction voltage beyond which power generation
becomes infeasible, and that the critical values of these two
quantities are strongly coupled.
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Appendix

Proof of the stability condition in equation (25):
If equation (24) is unstable, this implies the existence of

an eigenvalue λ > 0, and a corresponding eigenvector Su 6= 0,
such that

λSu = AclSu + SuAT
cl −

√
1

2π
CSuCT

(CSCT)3/2
[FCS+ SCTFT

].

(57)

Because we assume take asymptotic stability of Acl for
granted, the solution Su to the above satisfies

Su =

∫
∞

0
exp[(Acl −

1
2λI)t]

×

[
−

√
1

2π
CSuCT

(CSCT)3/2
[FCS+ SCTFT

]

]
× exp[(AT

cl −
1
2λI)t] dt (58)

= −

√
1

2π
CSuCT

(CSCT)3/2

∫
∞

0
exp[Aclt][FCS+ SCTFT

]

× exp[AT
clt]e

−λt dt (59)

= −

√
1

2π
CSuCT

(CSCT)3/2
W (60)

where W is the solution to the Lyapunov equation

AclW+WAT
cl − λW+ FCS+ SCTFT

= 0. (61)

Consequently, we have that

CSuCT
= −

√
1

2π
CSuCT

(CSCT)3/2
CWCT (62)

or, rearranging,

CSuCT

(
1+

√
1

2π
CWCT

(CSCT)3/2

)
= 0. (63)
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Through duality, this is equivalent to

CSuCT

(
1+

√
2
π

tr [FCSTλ]
(CSCT)3/2

)
= 0 (64)

where Tλ is the solution to

AT
clTλ + TλAcl − λTλ + CTC = 0. (65)

We know Tλ > 0 because CTC > 0 and Acl−
1
2λI is asymptot-

ically stable for any λ > 0. Furthermore, we know that Tλ→
0 as λ → ∞. Consequently, in equation (64), the solution
CSuCT

= 0 is unique for all λ > 0 if it can be shown that

|tr [FCSTλ]|

(CSCT)3/2
<

√
π

2
, ∀λ > 0 (66)

because this implies that the multiplier in the parentheses in
equation (64) can never be zero for λ > 0. But

|tr [FCSTλ]| = |CSTλF| (67)

6 (CSTλSCT)1/2(FTTλF)1/2 (68)

where we have used the observation that Tλ > 0, and the
Cauchy–Schwarz inequality. Thus, a conservative criterion for
the uniqueness of the CSuCT

= 0 solution is

(CSTλSCT)1/2(FTTλF)1/2

(CSCT)3/2
<

√
π

2
, ∀λ > 0. (69)

Now, we observe that because Tλ > 0 and Acl is stable, it is
the case that if λ1 < λ2, then Tλ1 > Tλ2 . Consequently, the
above bound is most tight at λ = 0, which gives the condition
shown in equation (25). Assuming this condition is satisfied,
the unstable eigenmode Su must have CSuCT

= 0. Thus, from
equation (57), it must satisfy

[Acl −
1
2λI]Su + Su[Acl −

1
2λI]T = 0 (70)

which, because Acl −
1
2λI is asymptotically stable for all

λ > 0, has the unique solution Su = 0. But Su 6= 0 in order
to be an eigenmode, and thus we arrive at a contradiction.
This completes the proof.
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